Monday 22 May 2017

Processo De Média De Movimento De Primeira Ordem



4.2 Modelos estacionários lineares para séries temporais onde a variável aleatória é chamada inovação porque representa a parte da variável observada que é imprevisível dados os valores passados. O modelo geral (4.4) assume que é a saída de um filtro linear que transforma as inovações passadas, isto é, é um processo linear. Esta hipótese de linearidade é baseada no teorema de decomposição de Wolds (Wold 1938) que diz que qualquer processo discreto de covariância estacionária pode ser expresso como a soma de dois processos não correlacionados, onde é puramente determinista e é um processo puramente indeterminista que pode ser escrito como um processo linear Soma do processo de inovação: onde está uma seqüência de variáveis ​​aleatórias não correlacionadas em série com média zero e variância comum. A condição é necessária para a estacionaridade. A formulação (4.4) é uma reparametrização finita da representação infinita (4.5) - (4.6) com constante. É geralmente escrito em termos do operador de defasagem definido por, que dá uma expressão mais curta: onde o polinômio polinômios e são chamados o polinômio polinomial, respectivamente. A fim de evitar a redundância de parâmetros, presumimos que não há fatores comuns entre o e os componentes. Em seguida, estudaremos o enredo de algumas séries temporais geradas por modelos estacionários com o objetivo de determinar os principais padrões de sua evolução temporal. A Figura 4.2 inclui duas séries geradas a partir dos seguintes processos estacionários calculados por meio do quantar genarma: Figura 4.2: séries temporais geradas pelos modelos Como esperado, ambas as séries temporais se movimentam em torno de um nível constante sem alterações na variância devido à propriedade estacionária. Além disso, este nível está próximo da média teórica do processo, e a distância de cada ponto a este valor é muito raramente fora dos limites. Além disso, a evolução da série mostra desvios locais da média do processo, conhecida como o comportamento de reversão médio que caracteriza as séries temporais estacionárias. Estudemos com algum detalhe as propriedades dos diferentes processos, em particular, a função de autocovariância que capta as propriedades dinâmicas de um processo estacionário estocástico. Esta função depende das unidades de medida, portanto a medida usual do grau de linearidade entre as variáveis ​​é o coeficiente de correlação. No caso de processos estacionários, o coeficiente de autocorrelação a lag, denotado por, é definido como a correlação entre e: Assim, a função de autocorrelação (ACF) é a função de autocovariância padronizada pela variância. As propriedades do ACF são: Dada a propriedade de simetria (4.10), o ACF é normalmente representado por meio de um gráfico de barras nos retornos não negativos que é chamado de correlograma simples. Outra ferramenta útil para descrever a dinâmica de um processo estacionário é a função de autocorrelação parcial (PACF). O coeficiente de autocorrelação parcial com defasagem mede a associação linear entre os efeitos dos valores intermediários e é ajustado para eles. Portanto, é apenas o coeficiente do modelo de regressão linear: As propriedades do PACF são equivalentes às do ACF (4.8) - (4.10) e é fácil provar que (Box e Jenkins, 1976). Como a ACF, a função de autocorrelação parcial não depende das unidades de medida e é representada por meio de um gráfico de barras nos retornos não negativos que é chamado de correlograma parcial. As propriedades dinâmicas de cada modelo estacionário determinam uma forma particular dos correlogramas. Além disso, pode-se demonstrar que, para qualquer processo estacionário, ambas as funções, ACF e PACF, aproximam-se de zero, uma vez que a defasagem tende ao infinito. Os modelos não são sempre processos estacionários, por isso é necessário primeiro determinar as condições de estacionaridade. Existem subclasses de modelos que têm propriedades especiais, por isso vamos estudá-los separadamente. Assim, quando e, é um processo de ruído branco. Quando, é um processo de ordem móvel pura de ordem. , E quando se trata de um puro processo autorregressivo de ordem. . 4.2.1 Processo de Ruído Branco O modelo mais simples é um processo de ruído branco, onde é uma seqüência de variáveis ​​médias zero não-correlacionadas com variância constante. É denotado por. Este processo é estacionário se sua variância for finita, dado que: verifica as condições (4.1) - (4.3). Além disso, não está correlacionada ao longo do tempo, então sua função de autocovariância é: A Figura 4.7 mostra duas séries temporais simuladas geradas a partir de processos com média e parâmetros zero e -0,7, respectivamente. O parâmetro autorregressivo mede a persistência de eventos passados ​​nos valores atuais. Por exemplo, se, um choque positivo (ou negativo) afeta positivamente (ou negativamente) por um período de tempo que é maior quanto maior o valor de. Quando, a série se move mais rudemente em torno da média devido à alternância na direção do efeito de, ou seja, um choque que afeta positivamente no momento, tem efeitos negativos sobre, positivo em. O processo é sempre invertible e está parado quando o parâmetro do modelo é obrigado a ficar na região. Para provar a condição estacionária, primeiro escrevemos a na forma de média móvel por substituição recursiva de (4.14): Figura 4.8: Correlatogramas de população para processos Ou seja, é uma soma ponderada de inovações passadas. Os pesos dependem do valor do parâmetro: quando, (ou), a influência de uma determinada inovação aumenta (ou diminui) através do tempo. Tomando as expectativas para (4.15) para calcular a média do processo, temos: Dado que, o resultado é uma soma de termos infinitos que converge para todo o valor de apenas se, em que caso. Um problema semelhante aparece quando calculamos o segundo momento. A prova pode ser simplificada assumindo que, isto é,. Então, a variância é: Novamente, a variância vai para o infinito, exceto para, caso em que. É fácil verificar que tanto a média como a variância explodem quando essa condição não se mantém. A função de autocovariância de um processo estacionário é, portanto, a função de autocorrelação para o modelo estacionário é: Ou seja, o correlograma mostra um decaimento exponencial com valores positivos sempre se é positivo e com oscilações negativas positivas se for negativo (ver figura 4.8). Além disso, a taxa de decaimento diminui à medida que aumenta, portanto, quanto maior o valor de mais forte a correlação dinâmica no processo. Finalmente, há um corte na função de autocorrelação parcial no primeiro lag. Figura 4.9: Correlógrafos populacionais para processos Pode-se mostrar que o processo geral (Box e Jenkins, 1976): É estacionário somente se as raízes da equação característica do polinômio estiverem fora do círculo unitário. A média de um modelo estacionário é. É sempre invertible para quaisquer valores dos parâmetros. Seu ACF vai para zero exponencialmente quando as raízes de são reais ou com flutuações de onda de seno-coseno quando são complexas. Seu PACF tem um corte no atraso, isto é. Alguns exemplos de Correlatos para modelos mais complexos, como o, pode ser visto na figura 4.9. Eles são muito semelhantes aos padrões quando os processos têm raízes reais, mas assumem uma forma muito diferente quando as raízes são complexas (veja o primeiro par de gráficos da figura 4.9). 4.2.4 Modelo de média móvel auto-regressiva O modelo de ordens de média móvel autorregressiva geral (ordem finita) é: Os processos de erro de média móvel auto-regressivos (erros ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando instruções FIT E simulado ou previsão usando instruções SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivos. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido por PROC MODEL como A função ZLAG deve ser usada para modelos MA para truncar a recursividade dos atrasos. Isso garante que os erros defasados ​​começam em zero na fase de atraso e não propagam valores faltantes quando as variáveis ​​de período de atraso são perdidos e garantem que os erros futuros sejam zero em vez de faltarem durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário Geral para Modelos ARMA O processo ARMA (p, q) geral tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA geralmente funcionam se o modelo se encaixa bem nos dados eo problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo AR de alta ordem, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas de parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis ​​se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos do SASETS são os seguintes: PROCEDIMENTOS MÍNIMOS CONDUTAIS (Procedimentos ARIMA e MODELO) Procedimentos de mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG, ARIMA e MODELO) Procedimento somente) Hildreth-Lu, que exclui as primeiras p observações (procedimento MODEL somente) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais de estimativa de termos de erro de média móvel não é o ideal porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados ​​iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar este problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro do intervalo de inversibilidade. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A Macro AR A macro AR do SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SASETS e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita autoregressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de Opção LIST para um Modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em intervalos selecionados. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Lista de Código Compilado Declaração de Código como Analisado PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PR ER. OR - Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Autoresponder vetorial irrestrito Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​são exclusivos. Use um valor processname curto para o processo se as estimativas de parâmetro forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis ​​é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em defasagens selecionadas. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no retardo 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis ​​em vez de nos erros usando a opção TYPEV. Se você deseja modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de autorregressão vetorial, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis ​​necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2, e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas somente com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por mais informações especificadas em chamadas AR posterior para o mesmo valor de nome. As chamadas subseqüentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist assume todos os defasagens 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SASETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de MA vetorial não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicados. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média Restrita de Vetores Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA, mas é aguardar informações adicionais especificadas em chamadas de MA mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Especifica a lista de defasagens em que os termos MA devem ser adicionados. Simulação média móvel em movimento (primeira ordem) A Demonstração é definida de tal forma que a mesma série aleatória de pontos é usada independentemente de como as constantes e são variadas. No entanto, quando o botão quotrandomizequot é pressionado, uma nova série aleatória será gerada e usada. Manter a série aleatória idêntica permite ao usuário ver exatamente os efeitos na série ARMA de mudanças nas duas constantes. A constante é limitada a (-1,1) porque a divergência da série ARMA resulta quando. A Demonstração destina-se apenas a um processo de primeira ordem. Os termos AR adicionais permitiriam a geração de séries mais complexas, enquanto que os termos MA adicionais aumentariam o alisamento. Para uma descrição detalhada dos processos ARMA, ver, por exemplo, G. Box, G. M. Jenkins e G. Reinsel, Análise de séries temporais: Previsão e Controlo. 3a ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. LINKS RELACIONADOS2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. To satisfy a theoretical restriction called invertibility . we restrict MA(1) models to have values with absolute value less than 1. In the example just given, 1 0.5 will be an allowable parameter value, whereas 1 10.5 2 will not. Invertibility of MA models An MA model is said to be invertible if it is algebraically equivalent to a converging infinite order AR model. By converging, we mean that the AR coefficients decrease to 0 as we move back in time. Invertibility is a restriction programmed into time series software used to estimate the coefficients of models with MA terms. Its not something that we check for in the data analysis. Additional information about the invertibility restriction for MA(1) models is given in the appendix. Advanced Theory Note . For a MA(q) model with a specified ACF, there is only one invertible model. The necessary condition for invertibility is that the coefficients have values such that the equation 1- 1 y-. - q y q 0 has solutions for y that fall outside the unit circle. R Code for the Examples In Example 1, we plotted the theoretical ACF of the model x t 10 w t . 7w t-1 . and then simulated n 150 values from this model and plotted the sample time series and the sample ACF for the simulated data. The R commands used to plot the theoretical ACF were: acfma1ARMAacf(mac(0.7), lag. max10) 10 lags of ACF for MA(1) with theta1 0.7 lags0:10 creates a variable named lags that ranges from 0 to 10. plot(lags, acfma1,xlimc(1,10), ylabr, typeh, main ACF for MA(1) with theta1 0.7) abline (h0) adds a horizontal axis to the plot The first command determines the ACF and stores it in an object named acfma1 (our choice of name). The plot command (the 3rd command) plots lags versus the ACF values for lags 1 to 10. The ylab parameter labels the y-axis and the main parameter puts a title on the plot. To see the numerical values of the ACF simply use the command acfma1. The simulation and plots were done with the following commands. xcarima. sim(n150, list(mac(0.7))) Simulates n 150 values from MA(1) xxc10 adds 10 to make mean 10. Simulation defaults to mean 0. plot(x, typeb, mainSimulated MA(1) data) acf(x, xlimc(1,10), mainACF for simulated sample data) In Example 2, we plotted the theoretical ACF of the model x t 10 w t .5 w t-1 .3 w t-2 . and then simulated n 150 values from this model and plotted the sample time series and the sample ACF for the simulated data. The R commands used were acfma2ARMAacf(mac(0.5,0.3), lag. max10) acfma2 lags0:10 plot(lags, acfma2,xlimc(1,10), ylabr, typeh, main ACF for MA(2) with theta1 0.5,theta20.3) abline (h0) xcarima. sim(n150, list(mac(0.5, 0.3))) xxc10 plot (x, typeb, main Simulated MA(2) Series) acf(x, xlimc(1,10), mainACF for simulated MA(2) Data) Appendix: Proof of Properties of MA(1) For interested students, here are proofs for theoretical properties of the MA(1) model. Variance: (text (xt) text (mu wt theta1 w ) 0 text (wt) text (theta1w ) sigma2w theta21sigma2w (1theta21)sigma2w) When h 1, the previous expression 1 w 2. For any h 2, the previous expression 0. The reason is that, by definition of independence of the w t . E( w k w j ) 0 for any k j. Further, because the w t have mean 0, E( w j w j ) E( w j 2 ) w 2 . For a time series, Apply this result to get the ACF given above. An invertible MA model is one that can be written as an infinite order AR model that converges so that the AR coefficients converge to 0 as we move infinitely back in time. Well demonstrate invertibility for the MA(1) model. We then substitute relationship (2) for w t-1 in equation (1) (3) (zt wt theta1(z - theta1w ) wt theta1z - theta2w ) At time t-2 . equation (2) becomes We then substitute relationship (4) for w t-2 in equation (3) (zt wt theta1 z - theta21w wt theta1z - theta21(z - theta1w ) wt theta1z - theta12z theta31w ) If we were to continue (infinitely), we would get the infinite order AR model (zt wt theta1 z - theta21z theta31z - theta41z dots ) Note however, that if 1 1, the coefficients multiplying the lags of z will increase (infinitely) in size as we move back in time. To prevent this, we need 1 lt1. This is the condition for an invertible MA(1) model. Infinite Order MA model In week 3, well see that an AR(1) model can be converted to an infinite order MA model: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w ) This summation of past white noise terms is known as the causal representation of an AR(1). In other words, x t is a special type of MA with an infinite number of terms going back in time. This is called an infinite order MA or MA(). A finite order MA is an infinite order AR and any finite order AR is an infinite order MA. Recall in Week 1, we noted that a requirement for a stationary AR(1) is that 1 lt1. Lets calculate the Var( x t ) using the causal representation. This last step uses a basic fact about geometric series that requires (phi1lt1) otherwise the series diverges. Navegação

No comments:

Post a Comment